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SUPPLEMENTARY FIGURES 
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Figure S1. Schematic of the chemical reactions in the model. A, activator; P, unbound promoter; 
P’, bound promoter; M, mRNA; D, downstream gene. Reactions and their rates are listed in 
Table S1.  
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Figure S2. Linear cost function. The maximum concentration of stressor that 0.1% of cells in a 
population can survive and the corresponding average cost of growing in the absence of stressor. 
Values were measured for constant and pulsing activator dynamics for (A) one downstream gene 
and (B) ten downstream genes with KD = 10,000 molecules. The cost function is linear 
(Methods). Error bars show standard deviations over three simulations. 
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Figure S3. Histogram of downstream protein levels are equivalent when comparing data 
generated using a single 105 minute simulation (dashed line) and the final data points from 105 
independent simulations (solid line). (A-B) Constant input distributions of downstream proteins 
plotted on (A) linear and (B) log scales. (C-D) Pulsing input distributions on (C) linear and (D) 
log scales. 
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Figure S4. Fast promoter dynamics. (A) Maximum cross correlation as a function of the 
dissociation constant, KD. (B, C) Maximum survivable concentration of stressor and the 
corresponding average cost of growing in the absence of stressor for constant and pulsing 
activator dynamics with (B) one downstream gene and (C) ten downstream genes with KD = 
10,000 molecules. Values from the pulsing dynamics are normalized to the constant input case. 
Error bars show standard deviations over three simulations. 
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Figure S5. Effect of growth and partitioning on coordination. (A) Simulation with cell growth 
and partitioning showing the number of molecules of a downstream genes controlled by a 
pulsing input; KD = 10,000 molecules. (B) Concentration of the downstream protein. In this plot 
the data from (A) is divided by the cell volume, which changes with time. (C) Maximum cross 
correlation between a pulsing activator and downstream protein as a function of KD. The data 
generated using the model with cell division is similar to that without division and growth 
modeled explicitly, especially for large KD values. (D) Pearson correlation between two 
downstream genes with KD = 10,000 under the control of a pulsing input with and without 
growth and partitioning.  (E, F) The maximum concentration of stressor that 0.1% of cells in a 
population can survive and the corresponding average cost of growing in the absence of stressor, 
when the effect of growth and partitioning are included. Values were measured for constant and 
pulsing activator dynamics for (E) one downstream gene and (F) ten downstream genes with KD 
= 10,000 molecules. Error bars show standard deviations over three simulations. 
 



 7 

0 1000 2000 3000 4000 5000 6000

Protein levels (# of molecules)

0

1

2

3

4

5

6

7

8

9

F
re

q
u
e
n
c
y

× 10
ï 2

0
2000 4000 6000 8000 10000

10ï7

10ï5

10ï3

10ï1

A
B C

...

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
a
x
im

u
m

c
o
n
c
e
n
tr

a
ti
o
n

Constant Pulsing

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o
s
t
w

it
h
o
u
t
s
tr

e
s
s
o
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
a
x
im

u
m

c
o
n
c
e
n
tr

a
ti
o
n

Constant Pulsing

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o
s
t
w

it
h
o
u
t
s
tr

e
s
s
o
r

Pulsing

Constant

1 2 3 4 5 6 7 8 9 10
10

ï8

10
ï7

10
ï6

10
ï5

10
ï4

10
ï3

10
ï2

10
ï1

10
0

Number of genes coordinated (n)

Pulsing   K
D
 = 1,000 (medium)

Int. & Low Ext. Noise K
D
 = 10,000 (high)

Int. & Medium Ext. Noise  K
D
 = 10,000 (high)

Int. & High Ext. Noise K
D
 = 10,000 (high)

F
ra

c
ti
o
n
 o

f 
c
e
ll
s
 w

it
h
 n

g
e
n
e
s
 c

o
o
rd

in
a
te

d

D

 
 
Figure S6. Medium dissociation constant (KD = 1000 molecules). (A) Histograms of 
downstream gene expression. Inset shows the same data on a semilogarithmic scale. Note that 
the distributions are not identical due to the nonlinear nature of the activator curve: the pulsatile 
input spends more time at low values on the activation curve than the constant input does, 
resulting in lower mean expression of the downstream gene. (B, C) Maximum survivable 
concentration of stressor and the corresponding average cost of growing in the absence of 
stressor for constant and pulsing activator dynamics with (B) one downstream gene and (C) ten 
downstream genes with KD = 1000 molecules. Values from the pulsing dynamics are normalized 
to the constant input case. Error bars show standard deviations over three simulations. (D) The 
fraction of cells with all downstream genes coordinated as a function of the number of 
downstream genes, n. The three noise data cases are reproduced from Fig. 4 for context and 
show results for infrequently activated downstream genes (KD = 10,000 molecules). The pulsing 
data is for downstream genes with a medium dissociation constant (KD = 1000 molecules). The 
plots do not start at the same point when n = 1 because the probability that a medium KD gene is 
above the threshold for survival is greater than the probability that a high KD gene is above the 
same threshold. 
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Figure S7. Cross correlation between two downstream genes (KD = 10,000 molecules) with a 
noisy activator input. The three noise levels correspond to those shown in Fig. 3E and F. 
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SUPPLEMENTARY TEXT 
 
Probability of coordination from dynamic and constant inputs 
To gain further insight into the effects of coordination, we calculated the probabilities of 
coordinating n downstream genes using a simplified system, comparing a constant input with a 
simple dynamic input modeled by a square wave signal.  

 
 

 
 
Note that, by construction, the two signals have the same mean. We assumed that the probability 
of turning on expression of a downstream gene is linearly related to the input, such that higher 
inputs result in an increased probability of activating the downstream gene. We found this to be a 
reasonable assumption based on empirical fits to our data (Supplementary Methods). The 
probability of coordinating n genes is the probability that all downstream genes are coordinated 
simultaneously 

 
Comparing the two types of inputs, we find 

 

 
 
The ratio of the two probabilities is 

 
Therefore, the probability of coordinating n genes is always higher with pulsing than with a 
constant inputs when n > 1 

 
 
Note that the two probabilities are equal when n = 1, as expected since coordination requires 
more than one gene.  
 
 
 
SUPPLEMENTARY METHODS 
 
Fast dynamics and moderate affinity downstream gene 
Fast dynamics (Fig. S4) were modeled by increasing KON and KOFF, as listed in Table S1, by a 
factor of 10. Note that the dissociation constant KD (=KOFF/KON) stays the same.  
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For the moderate affinity downstream gene (Fig. S6) KD = 1000 molecules. 
 
 

 
Coordination of n downstream genes 
In the probability calculations described above we assumed a linear relationship between the 
probability of turning on expression of a downstream gene and the concentration of the activator. 
We determined the linear relationship empirically, finding γ = 3.85x10-4, by using Eureqa (1). 
This relationship holds for the thresholds described above with R2 > 0.99 for the linear 
regression fit. 
 
Modeling growth and partitioning 
We assumed a cell division time of 34.7 minutes (equal to –ln(2)/0.02, the protein degradation 
half-life from Table S1). During growth, cellular volume increased following , 
where t is the time from the previous cell division event and  was set to ln(2) to allow for a 
mean volume of 1. At every cell division event, cellular volume was reset to  and the contents 
of the cell, including all protein, mRNA, and DNA species were partitioned between two 
daughter cells following a negative binomial distribution with probability 0.5. This distribution 
measures the number of molecules that are partitioned between each cell, assuming that every 
molecule is independent and has equal probability of being transmitted to each daughter cell. 
With variable volume, the units of KOFF (Table S1) become Vr/min-1, where Vr is the normalized 
volume, or volume/average volume. The pulsing signal was adjusted to match the dynamics of 
the case with fixed volume. To achieve this, at every time step the number of molecules of the 
activator was divided by the normalized volume.  However, instead of multiplying KOFF by Vr 
and dividing the number of molecules by Vr, KOFF was held constant during the simulation and 
the number of molecules of the activator was varied according to the pulsing signal, and not 
corrected by volume.  
 
Equivalence of long time simulation and many short time simulations 
We verified that distributions of downstream protein levels generated using long simulations are 
equivalent to those generated by running many shorter simulations. This approach reduces the 
computation time required to generate data. For the long time course simulations in Fig. S3, we 
first performed an initialization simulation of 1440 minutes (24 hours) and used the final values 
from these data to set initial conditions. We then ran 105 minute simulations.  For the short time 
simulations (Fig. S3), we used the initialization step and ran 105 simulations of 1440 minutes 
each, where the input activator signal had a random phase drawn from a uniform distribution 
between 0 and 240 minutes (corresponding to the period of the signal) to avoid sampling at the 
same point in the cycle every time. 

 

 
Table S1. Reaction rates 

Reaction 
rate 

Value Reaction Comments 
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KD 10,000 molecules  We set the amplitude of the pulses one order of 
magnitude lower than the KD. One order of 
magnitude between the KD of regulated genes 
has been observed experimentally (2, 3). 

KOFF
 0.1  min-1 APP +→'  Selected based on studies from both yeast and 

bacteria (3-5). 

KON
 

(molecules min)-

1 

'PAP →+  
 

α 0.02 min-1 MPP +→  Basal expression 

α’ 2 min-1 MPP +→ ''  One order of magnitude higher than typical 
transcription rates in both in yeast (6) and E. coli  
(7). Note that these rates are based on only one 
RNA polymerase molecule, and several 
molecules work at the same time, therefore we 
increased the rate by an order of magnitude. The 
results are not sensitive to the exact value of α’. 

λM
 0.1 min-1 Ø→M  Typical degradation rate in E. coli (8) and in the 

feasible range for yeast (9).  

β 10 min-1 
 

 

One order of magnitude higher than typical 
translation rates in E. coli (10), yeast (11), and 
mice (12). Note that these results are based on 
only one ribosome complex per mRNA, and 
several can work at the same time; the typical 
lag between translation initiation is 15 seconds 
in E. coli (13). The results are not sensitive to 
the exact value of β. 

λD 0.02 min-1 

 

 

We used a typical half-life of 34.7 min, which 
corresponds with a stable protein in E. coli or a 
moderately degraded protein in yeast (14, 15). 

 
 
Table S2. KON and noise contributions for different activator profiles. The KON value from Table 
S1 is multiplied by the constants listed here. ηtot

2 = ηint
2 +ηext

2  
 

Activator profile KON 

scaling factor 

Total Noise 

(ηtot) 

Intrinsic Noise 

(ηint) 

Extrinsic Noise 

(ηext) 

Constant expression 1 0 0 0 

Only Intrinsic Noise 1 0.21 0.21 0 

Intrinsic & Low 
Extrinsic Noise 

1.052 0.24 0.21 0.11 
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Intrinsic & Medium 
Extrinsic Noise 

1.266 0.29 0.21 0.20 

Intrinsic & High 
Extrinsic Noise 

1.626 0.34 0.21 0.27 

 
 



 13 

 
REFERENCES 
1. Schmidt, M., and H. Lipson. 2013. Eureqa (Version 0.98 beta) [Software]. Available from 

http://www.eureqa.com/. 
2. Lee, P., B.-R. Cho, H.-S. Joo, and J.-S. Hahn. 2008. Yeast Yak1 kinase, a bridge between PKA and stress-

responsive transcription factors, Hsf1 and Msn2/Msn4. Molecular microbiology 70:882-895. 
3. Hansen, A. S., and E. K. O'Shea. 2013. Promoter decoding of transcription factor dynamics involves a 

trade-off between noise and control of gene expression. Molecular systems biology 9:704. 
4. So, L.-H., A. Ghosh, C. Zong, L. a. Sepúlveda, R. Segev, and I. Golding. 2011. General properties of 

transcriptional time series in Escherichia coli. Nature genetics 43:554-560. 
5. China, A., P. Tare, and V. Nagaraja. 2010. Comparison of promoter-specific events during transcription 

initiation in mycobacteria. Microbiology (Reading, England) 156:1942-1952. 
6. Pelechano, V., S. Chávez, and J. Pérez-Ortín. 2010. A complete set of nascent transcription rates for yeast 

genes. PLoS One 5. 
7. Davenport, R. J., G. J. L. Wuite, R. Landick, and C. Bustamante. 2000. Single-Molecule Study of 

Transcriptional Pausing and Arrest by. Science 287:2497-2500. 
8. Selinger, D. W., R. M. Saxena, K. J. Cheung, G. M. Church, and C. Rosenow. 2003. Global RNA Half-Life 

Analysis in Escherichia coli Reveals Positional Patterns of Transcript Degradation. Genome research 
13:216-223. 

9. Wang, Y., C. L. Liu, J. D. Storey, R. J. Tibshirani, D. Herschlag, and P. O. Brown. 2002. Precision and 
functional specificity in mRNA decay. Proceedings of the National Academy of Sciences of the United 
States of America 99:5860-5865. 

10. Sørensen, M., C. Kurland, and S. Pedersen. 1989. Codon usage determines translation rate in Escherichia 
coli. Journal of molecular biology 207:365-377. 

11. Bonven, B., and K. Gulløv. 1979. Peptide chain elongation rate and ribosomal activity in Saccharomyces 
cerevisiae as a function of the growth rate. Molecular and General Genetics 170:225-230. 

12. Schwanhäusser, B., D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach. 2011. 
Global quantification of mammalian gene expression control. Nature 473:337-342. 

13. Siwiak, M., and P. Zielenkiewicz. 2013. Transimulation - protein biosynthesis web service. PLoS One 
8:e73943. 

14. Belle, A., A. Tanay, L. Bitincka, R. Shamir, and E. K. O'Shea. 2006. Quantification of protein half-lives in 
the budding yeast proteome. Proceedings of the National Academy of Sciences of the United States of 
America 103:13004-13009. 

15. Woldringh, C. L., M. a. de Jong, W. van den Berg, and L. Koppes. 1977. Morphological analysis of the 
division cycle of two Escherichia coli substrains during slow growth. Journal of bacteriology 131:270-279. 

 

 


